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I. Introduction

The problem of covering a polveon with simpier polveons has attracted the interest of
many researchers [A8LO'RSTINSGLORRTL One such problem is finding the minimum
number of star polveons needed to cover a given polvgon (a star polvgon is such that there
exists a point in the polvgon from which all points in the polygon are visible). Covering a
polvgon with the minimum number of star polygons (minimum star cover) is equivalent to
the placement of the minimum number of point guards (minimum guard cover) so that
each point inside the polvgon is visible to some guard. This problem was shown to be
intractable (NP-hard {GiJ79]) for polyeons with holes in [O'RS83]. The problem was shown
to remain intractable for simple polygons in [LL84., A84]. The complexity of finding
minimum guard covers for simple orthogonal polygons remains an open question. Many of

the results on guard covers and the related Art Gallery problem can be found in [O'R87).

Because of the intractability of most minimum guard cover problems, restricted
classes of polygons and different definitions of visibility have been considered
[K86,0'R87.MRS88|. In the standard definition of visibility two points are said to be visi-
ble if the straight line segment joining them does not intersect the exterior of the polygon.
An important class of polygons is that of orthogonal polygons. A polvgon is an orthogo-
nal polygon if all its edges are parallel to the major axes. Alternative definitions of visi- é
a

bility have been proposed in connection to orthogonal polygons. Two points inside an

orthogonal polygon are said to be s-visible [\RS88] if they can be joined by an orthogo-
nally convex staircase path that does not intersect the exterior of the polygon. Two points ———

are said to be r-visible [I[X86] if they can be placed inside an orthogonal rectangle that is




e

completely contained in the polygon. The notions of s-visibility and r-visibility direetly
lead to s-star and r-star polygons.

Polynomial time algorithms for solving restricted versions of the guard cover prc hlem
in simple orthogonal polygons have been reported in [IK86.MRS88]|. INeil [NN6i cave un
O(n*-) time algorithm for minimally covering a horizontally convex orthogonal polveon
with the minimum number of r-star polvgons. A faster implementation of the ~ame
approach that runs in optimal O(n) time is reported in {GN88]. In [MRSS8]. an O{n?)
time algorithm for covering an orthogonal polygon that has only three (out of the possible
four) dent orientations with the minimum number of s-star polygons is presented. Thev
also give an O(n!%) time algorithm for the case when the polygon has dents in all four

directions.

A structure that is often associated with polygons and has found many applications in
Computational Geometry is a grid (e.g., the grid induced by the polygon's edges/vertices).
I[f we think of the grid edges as corridors, the star cover problem in a grid is to find the
minimum number of guards that need to be stationed in the grid so that each point in the
grid is visible to some guard. Finding a minimum guard cover in a three dimensional grid
is NP-hard but a minimum cover for a two dimensional grid can be found in O(n"?3) time

[N86] (where n is the number of segments in the grid).

In this paper we address the problem of finding minimum star covers under periscope
visibility. Two points are visible under periscope visibility if there is an orthogonal
path with at most one bend connecting them without intersecting the exterior of the

polvgon. Generalizing, k-bend visibility allows staircase paths with at most & bends




(periscope visibility is the same as 1-bend visibility). [f & ean have any vadue bt the paths
are restricted to be orthogonally convex. we have s-visibility. In the next seetion we <how
that finding 2 minimum periscope guard cover for a three dimensional orid is NP-hard.
Also. finding minimum k-bend guard covers and s-guard covers are NP-hard problems. In
section III we present an O(n3) time algorithm for finding the minimum number of peri-
scope guards needed to cover a simple 2-d grid (simple wrids are closely refated 1o orthogo-
nal polygons). In section [V we adapt this result to the problem of tinding the minimum
number of periscope guards needed to cover a simple orthogonal polvgon and obtain O(n?)
algorithms for finding minimum periscope guard covers for a class of orthogonal polygons

that includes monotone and orthogonally convex polygons.

1. Periscope Guard Covers for 3-d Grids.

The complete two-dimensional grid of size n is the graph with vertex set V7 =
{1,2...n} X {1,2,...,n} and edge st E = {{(¢,), (k.m)}: |-k |+ | j-m |=1}. The com-
plete 3-d grid is defined similarly. A (partial) grid is any subgraph of the complete grid.
I[n a geometric setting we think of the grid edges as corridors and the grid vertices as inter-
sections of corridors. We also assume that the grid edges are parallel to the major axes.
Finding a minimum set of guards needed to cover (under normal visibility) a 3-d grid is
NP-hard [N86]. The reduction is from the vertex cover problem for graphs with maximum
degree three [GJ79,0'R87]. We use a similar approach to show that the minimum cover
problems for periscope guards, k-bend guards and s-guards are NP-hard for 3-d grids.

Vertex Cover:

Instance: Graph G =(V,E) with all vertices having degree three or less. positive
integer k < |V ].




Question: [s there a vertex cover of size < & for G 7 (Le.. a set of vertices such that
each edge in ¢ ix ineldent on at least one vertex in the set).

Periscope Guard Cover for 3-d Grid:

Instance: .\ three dimensional «rid with n segments, integer m.

Question: Is there a positioning of m periscope guards in the grid so that every point
in the arid ix visible 1o at Jeast one guard?

Given an instance of vertex cover we construct an instance of guard cover as f{ollows.
Index the vertices of G arbitrarily from 1 to [V]. We construct a three dimensional grid Q
such that @ can be covered by less than or equal to m guards (m to be determined later)
if and only if there is a vertex cover with at most & vertices in G. We start with a full 3-d
grid of size 6]V and assign the vertices of G to grid vertices so that the vertex v, is
assigned to the grid vertex (6. 61, 61). An edge (v;v;) of G is represented by a grid path
connecting the corresponding grid points. Grid paths for the edges need to be disjoint,
consist of 4r + 2 segments (for some integer z > 1) and the three paths corresponding to
the three edges incident on a vertex of G need to be orthogonal to each other in the
immediate neighborhood of the grid vertex where they meet. Once a path that satisfies
these requirements is constructed for each edge, all grid edges and vertices that are not
used in these paths are removed. The resulting grid is @. The two types of grid paths
shown in Figure 1 are sufficient to make all the connections. We refer to them as short
(six segments) and long (fourteen segments) paths respectively. Short paths are used as
much as possible: long paths are needed to bend around a previous connection so that all
connections to a grid vertex that represents one of the original graph vertices will occupy a

distinct direction in the immediate vicinity of the vertex.




Theorem 1: There is a vertex cover of size & in ¢ if and only il there is 1~ b,
to the corresponding grid cover problem of size & + }s;, where s,= 1 or 3 depending . 1,

whether the * »dee corresponds to a short or a long path. respectiveiy.

Proof: Assume there is a vertex cover of size k. Position £ guards at arid vertices
that eorrespond to the vertices in the vertex cover. Then position the remaining wiards o
svery fourth corner in the six or fourteen bend paths (Figure 1) starting from the pesition
o! the guards corresponding to the vertex cover (if both ends of a path correspond to ver-
tices in the vertex cover. arbitrarily select one of them). One additional guard is needed in

everyv short path and three additional guards are needed in every long path.

Conversely. assume that a solution of size k£ + }s; for the grid cover problem exists.
\We can obtain a solution to the vertex cover problem from the solution of the grid cover
problem as follows. Note that at least one guard per short path and three guards per long
path are needed in their interior to cover them (in addition to guards at the endpoints of
paths). If we spread these guards as shown in Figure 1, the remaining & guards can be
shifted to the grid vertices corresponding to the vertices of G without disturbing the cover.
These vertices must constitute a vertex cover in G. If not, there must be an edge in G
such that the corresponding short (long) grid path is guarded by just one (three) guard

which is impossible since the path consists of six (fcurteen) segments. Q.E.D.

Corollary 1: Finding the minimum number of periscope guards needed to cover a

3-d grid is NP-hard.

Consider now k-bend guards. We can use the same approach but use grid paths con-

sisting of 2(k+1)z + k+1 (z > 1) segments for each edge in G. For s-guards. there is ne




upper bound on the size of the stairease connecting two points (so that they are visible.
However, the staircase is restricted to be orthogonally convex. \We can use this require-
ment to construct grid paths for the edges in ¢ that will consist of -tr + 2 orthogonally
convex staircases connected so that no sequence of two or more staircases is orthogonally
convex. Then the same arguments as in Theorem 1 can be used to show that the
minimum cover problem for s-guards in 3-d grids is NP-hard.

Corollary 2: The minimum cover problems for k-bend guards and s-guards in 3-d

grids are NP-hard.

M. Minimum Periscope Guard Covers for Simple 2-D Grids.

In this section we consider the periscope guard cover problem for a class of 2-d grids
(simple grids) which can be used to model the periscope guard problem in simple orthogo-

nal polygons.

A grid segment is any maximal stréight line sequence of successive grid edges. A
grid is called a simple grid if all the endpoints of its segments lie on the outer face of the
planar subdivision formed by the grid (as in Figure 2a); otherwise, the grid is called a gen-
eral grid (a general grid may have holes as in Figure 2b). The crossing set C; of a seg-
ment s; is the set of segments that intersect s;. A segment s, is said to be dominated by
a segment s, if C| is a subset of C,. In Figure 2a, segments ¢ and d are dominated by seg-
ment e. A segment s is called a cross if there exists a segment s; such that the crossing
set of s; contains only s. A segment is called a pseudo cross if it becomes a cross by

removing zero or more segments dominated by it (note that every cross is also a pseudo
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eross). .\ scoment is ealled prime if it is neither a pseudo cross nor 1 dominated seement,
Two segments are equivalent if their crossing sets are the same. In figure 2a. segments
Loo4o 5 are crosses, seament ¢ is a pseudo cross, segment 3 is prime and secments b, g are
equivalent. Note that a periscope guard that can see a segment s can see all segments
equivalent 1o ~. Therefore we keep only one segment from each set of equivalent seg-

ments,

The importance of domination is illustrated in Figure 2a. A guard located on a dom-
inated segment can be moved to the dominating segment and still see all segments visible
from its original position (as well as some additional ones). For example. a guard at point
I can be moved to point y in Figure 2a and still see all the segments visible from z. This
indicates that certain segments are more important than others. We capture this idea by
Jefining a reduced grid. Let G be a simple grid. Mark all segments that are dominated in
G. The grid obtained by removing all marked segments is called the reduced grid. Fig-
ure 3 shows a grid with the dominated segments marked and the reduced grid obtained by

removing them.

Lemma 1: The reduced grid of any simple and connected grid is simple and con-

nected.

Proof: All end points of the original grid are in the outer face. After removing dom-
inated segments. all the remaining end points still lie in the outer face and the reduced grid
is simple. All segments connected by a dominated segment are also connected by the dom-
inating segment. Therefore removal of a dominated segment does not disconnect the grid

and the reduced «rid is connected. Q.E.D.




Two points on a grid are visible under periscope visibility if they e o the <anee ~ou-
ment or the segments on which thev lie intersect. Points Ivinz on the ~ume <eament e
Jotined to be directly visible while points on intersecting =euments upe snbi 0 e
indirectly visible. Given a simple grid we are interested in finding the inimeam
number of periscope guards that need to be placed in the grid so that wach peint in the
srid is visible to at least one guard. A set of guards that can sce the whole wrid is eailed o
guard cover for the grid.

Our approach for finding a minimum guard cover for a simple ¢rid is to identify
places where any optimum solution should have a guard, place 1 guard. remove a portion
of the grid and repeat until all of the grid is visible to a guard. Let R. R’ be two guard
covers for a simple grid. We say that a guard ¢; in R is equivalent to a guard g, in R" if
the two guards see exactly the same set of grid segments. A guard g, covers a guard ¢, if
the set of segments visible to g; contains the set of segments visible to 4. To cbtuin
minimum guard cover we locate each guard so that any minimum guard cover will contain

a guard equivalent to it or covered by it.

Lemma 2: There exists an optimum guard cover in which all guards are located at

grid vertices on segments that are not dominated.

Proof: We can adjust any guard cover to obtain one that has an equal (or smaller)
number of guards and satisfies the conditions. If guard g, is located in the interior of a
grid edge, a guard g, located at either endpoint of that edge covers g; and we can replace
gy with g; in the guard cover without increasing its size. Similarly. if ¢, is on a dominated

segment. there is a guard g; on a parallel dominating segment {that is not itsell
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Adominated) that covers g;. Q.E.D.

Lemma 3: There is an optimum guard cover in which every pseudo epoes 1<
cuard along it.

Proof: From the definition of a pseudo cross we have that there oviste 4 woment
that intersects only the pseudo cross or the pseudo cross and segments dominated by ir.
To see this segment any solution must have a guard either along it or on one of 1le <we-
ments that intersect it. In the first case we move the guard to the intersection of tiw seo-
ment with the pseudo cross. In the second case the guard is on a dominated secment: if
we move the guard to the pseudo cross {(dominating segment), the guard still sees all seq-

ments seen before (and some additional ones). Q.E.D.

Let C = {s},50, ... , 5;} be the crossing set of a segment s in the reduced grid. The
crossing set C is said to form a group if there exists a segment s’ € € such that s’ is dom-
inated by all segments in C. Then &' is called a junior segment in C. In Figure 3. the
crossing set for segment d forms a group and segment 6 is the junior segment in this
group. Another group is formed by the crossing set for segment 3 with segment ¢ or seg-

ment f as the junior segment (junior segments are not unique).

Lemma 4: Let s (respectively s,) be the left most (right most) segment in the cross-
ing set of a horizontal segment s in the reduced grid. Let s’ be a segment of minimum
rank (i.e.. smallest crossing set) in the crossing set of s. Let s; (s;) be the top most (bottom
most) segment in the crossing set of s’. Then the crossing set of s forms a group if and
only if segments s;,s,,5;,5, intersect to form a rectangle (as in Figure 4). A similar property

holds for any vertical segment. Note that the rectangle may be degencrate. i.e.. it may he




a segment or a point.,

Proof: A junior sezment in a zroup must have the smallest crossing set. Since it i«
dominated by all other seaments in the crossing set of s we must have that s,. s, (and all
other segments intersecting «"y must intersect wll segments in the crossing set of s: thus s

S

Ory

5p. sy intersect 1o form a rectancle. The rectangle degenerates to a segment when s,.

s, are the same and to a pcint when the crossing set of s contains only s'. Q.E.D.

Lemma 5: The crossing set of a prime segment 5 in the reduced grid can not form a
group.
Proof: Assume to the contrary that the crossing set of s forms a group. Let the

junior segment in the crossing set of s be s'.

If s’ intersects only s, s cannot be prime (it
will be a pseudo cross), a contradiction. If s’ intersects s and some other segment s, the
crossing set of s; must contain the crossing set of s (otherwise s’ will not be the junior seg-

ment). But then s; will dominate s implying that s is not a prime segment, a contradic-

tion. Q.E.D.

Lemma 8: Let G, be the reduced grid of a simple grid G. Let s be a pseudo cross
segment in G, such that its crossing set C = {s}, so, ..., 5;} forms a group. Let 5, € C be
a junior segment in the group. Then there exists an optimum guard cover for ¢ that con-

tains a guard equivalent to a guard placed at the intersection of s and s;.

Proof: Let r be the minimum number of guards needed to cover the grid and let @
be a placement of r guards that covers the grid. We prove the lemma by showing that @

can be rearranged so that a guard is placed at the intersection of s and s, and the resulting




cuard =et =il covers the erid. First note that s, must be a pseudo evoss in the cricinm ol

(dominated seuments do not appear in G, und prime segments can not be junior -

ments, Now consider the erossing =et of s,

Case 1: (The crossing set of 5, contains only s). Since s, is a psetrdo cross, tere ~ 5
suard adons it. We ean move this guard to the intersection of s and s, 1see [ioyre 5
withont atfecting the coverage.

Case 2: (The crossing set of s, contains more than one segment). Nince hoth « -
5, are psew!n erosses, (Q must have at least one guard along each of them or on the ~ec-
ments dominated by them. If a guard is on a dominated segment then we can safely nove
it to the pseudo cross that dominates it. If a guard is already at the point of intersection
of s and s, we are done. Otherwise, let guards ¢;, ¢» be at the intersection of s and <", 5,
and &', respectively. Now observe that ¢; and go must be at opposite corners of the rectan-
gle formed by the segments s. s;, s’ and s” (Figure 5b). If such a rectangle does not exist
then s; can not be a junior segment (contradicting Lemma 4). We can move ¢; and ¢, to
the other two corners of the rectangle without affecting the set of segments visible to them

(collectively). Q.E.D.

From G, we can construct two trees, the horizontal segment tree T, = (17, F,) and
the vertical segment tree T, =(V,, E,). T is constructed as follows (the construction for
T. is similar): If two or more horizontal grid segments are equivalent then we treat them
as o single horizontal segment. The set of vertices V} is, V = {t| v is a horizontal ~cu-

ment in Gp }. Two vertices vy,v, are connected by an edge (vy. vs) if the corresponding




horizontal scgments are neighbors, i.e.. there is a vertical =egment that interseets Toth of
them without intersecting any other horizontal seaments hetween them. Note that 75, 7T,

are trees because G, is a simple grid,

We use T} (or T,) to find a segment whose crossing set {orms a group. \We modify
T, as follows: A branching node in T, is a node that has degree three or higher. A leaf
of T, may be connected to the nearest branching node directly or throuch a path that
visits vertices of degree two. If. along such a path. the father / and grandfather ¢ of a
leaf segment s are such that ¢ dominates f and / dominates s we make both [ and s
children of ¢ and repeat this process as needed. The resulting tree is the modified hor-
izontal segment tree T),. Figure 6b shows T, for the reduced grid of Figure 6a and

Figure 6¢ shows the modified tree T,y,.

Lemma 7: The reduced grid G, of any simple grid G contains a segment whose

crossing set forms a group.

Proof: Every leaf segment of T} (or T,) is a pseudo cross. Consider a leaf [ in Tjp-
If ! is neither dominated nor equivalent to another segment there must be a segment s
such that s intersects with ! but not with the father of {. This means that the crossing set
of [ forms a group with s as the junior segment. If ! is not dominated but is equivalent to
another segment, again there is a segment s that intersects [ and segments equivalent to it

only. Then ! forms a group with s as the junior segment.

If all the leaves in T}, are dominated, let T’ be the tree obtained by removing the
leaf nodes of Tjy,. Consider now a node f in T}, that appears as a leaf in T'. Node [ in

Thm may have many leaves as its sons. A leaf segment s corresponding to a son of [ is




called an upper leaf segment (respectively lower leaf segment) if the v-coordinate of
s is greater (less) than the y-coordinate of /o 1 we trace the portions of the upper leaf
segments of [ that liz on the owrer faee 1 the planar subdivision induced by the erid
(disregarding vertices of degree onej we will 2ot o Manhattan sky line pattern as shown in
Figure 7b. Similarlv. an upside Jdown Manhattan <kv line will be formed if the lower leaf
segments of [ are traced. (Observe that i they o not form a Manhattan sky line. then
some son of [ will not be dominated by f. o contradiction). Now the leaf segment
corresponding to the left most or right most peuk of the sky line is a pseudo cross and its

crossing set forms a group. Q.E.D.

We are now ready to describe the algorithm for finding a minimum periscope guard
cover for a simple 2-d grid. The dominated segments in the given grid G are marked and
a reduced grid G, is obtained from G by removing dominated segments. Lemma 7 guaran-
tees that at least one segment of G, is such that its crossing set forms a group. Once such
a segment is found, the location of a guard ¢ that corresponds to an optimum solution is
determined by using Lemma 6 and visible segments in G are marked. We could remove
from G the segments that are visible to the current guard set and repeat the process on
the resulting smaller grid until the grid becomes empty. However a problem arises when
we remove a visible segment that may be used by a guard (positioned later) to see some
other segments indirectly. For example. when segments visible to ¢ in Figure 8a are
removed, the grid shown in Figure 8b results. Two additional guards are needed for a total
of three whereas two guards are enough to cover the original grid. The problem arises due

to the removal of segments that are indirectly visible to the current guard set but may




have a guard (positioned later} along them. There are cases when it is sale to remoyv.
indirectly visible segments. The following observations list the kinds of visible seginents
that can be safely removed.

Lemma 8: It is safe to remove a segment s from the grid when: (a) s is directly visi-
ble (to a gnard in the current guard set), (b) s is indirectly visible to a guard placed on seg-
ment s’ and s is dominated by s, (¢} s is visible and all segments in the crossing set of s

are visible. {d) s is visible and intersects with only one segment.

The algorithm therefore removes from G those segments that are visible and are safe
to remove (making use of the above observations). Note that the resulting grid G’ mav
contain some segments that may be indirectly visible. When a grid has some segments
marked visible then the definition of domination has to be adjusted accordingly. We say
that segment s; dominates segment s, if the set of invisible segments in C5 is a subset of

the set of invisible segments in C,. In Figure 9a, segment s, is dominated by segment s,.

Construct a reduced grid G, from G’ by removing dominated segments. Now observe
that cross (or pseudo cross) segments are of two kinds as shown in figure 10 (dotted seg-
ments are visible to the current guard set; note that segment sg is a cross but segment s, is
not). Both kinds of crosses always need a guard along them. From this it follows that

Lemmas 6, 7 hold even when the reduced grid contains some visible segments.

The algorithm therefore finds a segment that forms a group in the reduced grid of G’
and places the next guard using Lemma 6. This process is repeated until the remaining

grid is fully visible. A formal description of the algorithm is given below:




Algorithm GRID-COVER:

stepl:  Find all dominated segments in the simple grid &' and remove them, Let 70 i
the reduced grid.

<tep2: Tind a segment s in G, such that its crossing set forms a cronp. et 2 dencie i
junior segment in the crossing set of s.

step3: Place a guard at the intersection of s and s’ and remove all segments that are <ufe
to remove (Lemma 8) from the reduced grid.

stepl: Repeat stepl through step3 until all segments of the grid are visibie 1o 1 zuard.

The execution of the above algorithm is illustrated by an example in Ficure 11. Con-
sider the simple 2-d grid shown in Figure 1la. All dominated segments are marked by \/.
Segment 2 forms a group and a guard ¢, is placed at the point of intersection of a and 2,
The segments that are visible to ¢, are drawn in grey. Visible segments a.b.l and 2 are
safe to remove. In the grid obtained by removing these segments the algorithm finds that it
is safe to remove visible segments 3,4,5,7 and 8 (each of them intersects with only one seg-
ment). The location of the next four guards is found similarly (Figure 11c). Note that seg-
ment £ is not safe to remove (it connects invisible segments 15 and 16). \When the guard gg
is placed all the grid segments are visible and the algorithm terminates. Figure 11g shows

the final guard placement.

Theorem 2: A minimum periscope guard cover for a simple grid can be found in
O(n3) time.

Proof: We can construct the grid graph G formed by the intersection of grid seg-
ments in O(n?) time using the arrangement of lines algorithm in [CGL84 or EOS83]. This
zraph is represented by using the doubly connected edge list data structure (as described in
[GS83]) to facilitate traversal of the faces of the graph. We can find the crossing set of one

segment in O(n) time by simply traversing the graph along the segment. Then the crossing
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<ots of all seaments can be determined in time O(n=). A segment s dominates a sczment
i the erossing set of s contains the crossing set of s'. Note that if a secment is Jdom-

fnated then it is dominated by one of its neighbors. Therefore dominated segments ean bLe
ideuritied by comparing the crossing sets of neighboring pairs in O(n?) time. \WWe can form
thie reduced craph . from G by removing the dominated segments in O(n<) time by
traversing the craph on faces containing the segments, deleting the dominated seqments
“nd npdating the doubly connected edge list data structure. Whether or not the crossing
<«et f a segment s in G, forms a group can be determined by using Lemma 1 in O(n)
trime. Therefore we can find in O(n?®) time a segment whose crossing set form a group (hy
applving Lemma 4 at most O(n) times). Visible segments that are safe to remove can be
removed by traversing the graph in O(n?) time. Since the minimgm guard cover has size
at most O(n). all of the above steps will be repeated at most O(n) times and the overall

time complexity of algorithm GRID COVER is O(n3). Q.E.D.

The algorithm we have described works on simple grids. It is interesting to consider
what happens in general 2-d grids. It is easy to construct 2-d grids in which no segment
forms a group (e.g., consider the grid in Figure 12). If all the segments in the reduced grid
are pseudo crosses, we can find a minimum guard cover using the matching approach in
[N86I (since each pseudo-cross must have a guard along it). However, the reduced grid
may also contain prime segments and it is not clear that the approach we use for simple

srids can be extended to general grids.




V. Covering Orthogonal Polygons with Periscope Guards

In this section we consider the problem of finding the minimum number of o7
cunrds needed to cover an orthogonal polygon. We show that the polyeon cover v

~an be converted into an appropriate grid cover problem for a class of orthiowonal oy 2o s

Consider the subdivision formed by extending the edges of an orthozend poivz o
its interior. The polvgon now consists of rows and columns of rectangles. Without 7
senerality, we assume that no two polygon edges that face in opposite directions e o -
“near (if sueh o pair exists, we can shift one of the edges slightly ~o 11 we erente =~
row /column of rectangles where a degenerate row/column was before). Fach row:eolunrn
consists of a1 number of sequences of rectangles separated by portions of the exterior of the
polvgon. We construct a grid G to represent an orthogonal polygon P by associating u
¢rid segment with each sequence of rectangles. Then the internal grid vertices represent
individual rectangles in the polygon. Figure 13a shows an orthogonal polygon and Figure
13b shows the grid corresponding to it.

Lemma 9: The grid G is a simple and connected grid.

Lemma 10: Let X be a guard cover for the grid G. Then X is a guard cover for the
underlying polygon P.

Proof: Suppose that there is a point in P that is not visible to any guard in \". Con-
sider the rectangle that contains this point. There must be two grid segments that go
through this rectangle and both of them must be visible to a guard in X. Then anv zuard

that sees one of these edges in G sees all points in the rectangle in 2.  Q.E.D.




The ditfienity with the grid G is that the reverse of Lemma 8 is not true. t.e.. 1 @nard
cover lor the poiveon does not always correspond to a guard cover in the grid. For exam-
ple. consider the polvgon of Figure 11a and the corresponding grid (Figure 14b). Two
suards are neeaed to cover the grid but one guard is sufficient to cover the polygon. The
problem here rexufts from the two rectangles at the top of the polygon. Note that the
whole area in these rectangles is indirectly visible to a guard located at point z but a dis-
tinet suard for each rectangle is needed in the grid (the two horizontal segments in the top
rectangles are not visible to any single guard). Suppose that we place a grid guard at point
£ in both the polveon and the ¢grid. Then the grid segment corresponding to the left side
of the polvgon is indirectly visible to the guard. Consider then the infinite sequence of
vertical segments obtained by sliding segment a along the boundary of P so that it sweeps
through the top rectangle. All these segments are indirectly visible from point z: also, all
the points in the horizontal segment & (that is not visible to the grid guard at z) are
included in this sweep. That is, the segment b need not be included in the grid because
any guard that sees the left edge will automatically cover b as well. In effect, the horizon-
tal segment b can be replaced by its intersection with the sweeping segment without

affecting Lemma 10.

We sayv that a grid segment is a swept segment if there is a grid segment that
intersects it and it can be moved through the entire span of the swept segment without
intersecting the exterior of the polygon and while both its ends remain in contact with the
boundary of the polvgon. This definition can be applied recursively by removing swept

rectangles from P each time. All but the bottom horizontal segment in Figure 14d are




swept (recursively . Replacing corvesponding segments in the wrid with their tntepsoert 1
with the sweeping seement results in the grids of Figure Ic.e. Note that o <o ooy
can cover each of the arids. We eall the grid resulting from sweeping the swept grid ¢/
for the orthegonal poiveon.

There is one more problem with both grids ¢ and G;. It arises when the olveor
contains corners like the one shown in Figure 15, There are two orthozonal «riid =camenrs
that enter the corner and a gnard placed on either one of them can see the whole corner,
This is similar to what happens when we have swept segments but here we have 1 choice
of two wavs 1o wweep. The problem is that it is not clear locally which of the two choicrs
is best. We refer to this tvpe of corner as a swept corner. Note that choosing to sweep
with a vertical (respectively horizontal) segment is equivalent to adding a vertical (horizon-
tal) notch into the corner so that the notch is not visible from the vertical (horizontal) edze
that enters the corner. Also, note that additicn of such a notch eliminates one of the

choices, i.e., the grid cover corresponds to a polygon cover.

Lemma 9: A grid cover in the grid G obtained from a simple polvgon without swept

corners after replacing swept segments with points is equivalent to a polygon guard cover.

Proof: A guard cover for the grid is clearly a guard cover for the polvgon. Given a
suard cover for the polygon, we first obtain an equivalent cover in which all guards are in
the interior of some rectangle. To do this, we need to shift guards that lie at the border
between two or more rectangles (i.e., they are co-linear with some polygon edge(sh
without affecting their visibility. If the guard is at the border between two rectanzies. we

note that all the polygon edges that are co-linear with this border are facing in the <une
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direerion, Then moving the cnaemd to b oerior of the vovtangle e Tes i that -
direction does not affect the visibilite of the zuard. Guards that lie at the (point) border
between three or four reetaneles are handbed similarly.

From the polveon guard cover with ail gnards in the interior of rectangles, we obtain
an equivalent grid cover by shifting each onard to the nearest grid vertex (i.e.. the intersec-
tion of the grid segments that intersect the rectangle containing the guard). Suppose that
the resulting grid guard set does net cover the grid. Then there is a segment in G that is
not visible to any of the guards. That means than none of the rectangles intersected by
this segment and none of the rectangles intersected by segments in its crossing set con-
tained a guard in the original polvgon. But then the set of polygon guards did not cover

the polygon. a contradiction. Q.E.D.

Algorithm POLYGON-COVER:
stepl  Construct G, the grid of the polygon and remove swept segments from it.

step2 Find a leaf segment s in the reduced grid of G such that s is a pseudo cross and
the crossing set of s forms a group. Let s’ denote a junior segment in the crossing
set of s.

step3  Place a guard ¢ at the point of intersection of s and s’ and remove all segments
that are either directly visible to g or are swept by a segment directly visible to g¢.
Let G the remaining grid.

stepd U G#null goto step2.

Theorem 3: A minimum periscope guard cover for a simple orthogonal polygon

with a fixed number of swept corners can be constructed in O(n3).

Proof: Each corner represents two choices. Making the choice is equivalent to
removing the corner. As long as the number of corners is fixed, there are O(1) possible

choices to consider. For each choice we can apply the algorithm of the previous section to




obtain o minimam 2rid cover. Then we select the best of these grid covers and thar wii

Leoan eptimint polvoon cover, Q.E.D.

Corollary 2: \We cun find minimum polygon covers in O(n?) for simple orthozonally

S0n

nves polvoons, rivcona! menotone polygons and orthogonal spiral polyzons,

V. Concluding Remarks:

We presented Ofn ) slecorithms for finding optimum periscope guard covers for simple

srids and orthogonal polveons with a constant number of corners.  There are many

interesting open problems.  These include the periscope cover problem for general 2-d

grids, the k-bend guard cover problem for grids and orthogonal polygons. Our motivation

for considering periscope guards is to help determine the complexity of the guard cover

problem for orthogonal polvgons which remains a well known open problem.
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Figure 1: Short (six segment)

and long (14 segment) grid paths.
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Figure 2: Simple Grids and Grids with Holes.
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Figure 3. Doininated segments and the reduced ¢rid.
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Figure 4: Lemma 4

Figure 5: Proof of Lemma 6.
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Figure 6. Construction of the horizontal segment tree.
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Figure 7. Formation of Manhattan skvline.




-~
t s
‘ x
b i Sre
&
!
{ |
|
I

€=

b

Figure <. It is not =afe to remove visible segments from grid.
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Figure 9. Definition of domination when some segments are visible.
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Figure 10. Two kinds of crosses.
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Example showing the execution of algorithm GRID-COVER.

Figure 11.
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Figure 11. Continuyed.
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Figure 11. Continued.
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[ieure 12, A general grid where no crossing set forms a group.
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The simple grid of an orthogonal polygon.
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Figure 14. Swept segments and the swept arid (7.




———y

L

Figure 15. A swept corner in a polygon.




